
Model-Based Fault
and Safety Analyses
of Complex Systems

Managing complexity using modular and digitalised processes

criticalsoftware.com

info@criticalsoftware.com

White Paper Model-based fault and safety analyses of complex systems

© Critical Software. All rights reserved.

Setting the scene
for model-based
fault analysis

More components, more functions, more interactions – how

can you keep increasing system complexity under control?

Now more than ever, the development of multi-layered critical

systems requires a sound overview of all its components and a good

understanding of the correlations, even beyond the boundaries of

the product itself. For decades, modelling and simulations have

helped to map and evaluate complex relationships. In the last

decade, the term ‘model-based system engineering’ (MBSE) has

become increasingly popular in system and function development,

often combined with the SysML (Systems Modelling Language).

Nevertheless, text-based documents are still widely used by

many development departments to describe their systems,

enriched with flat graphics and managed in local files and

folders. Often created on the basis of classic office software

tools, these solutions reach their limits during the development

of ‘nominal’ functions, their verification and unique traceability.

The situation becomes particularly critical when non-nominal

behaviour is considered in analyses aiming to investigate and

prove the functional safety and reliability of a system, especially

in situations where human lives may ultimately be at stake.

There is a complex variety of operating states which must be

captured and evaluated during risk analysis. These include

numerous component types with individual fault modes, each

used x-amount of times; irregular interactions, restructuring and

reconfiguring topologies; the difficult interplay of software and

hardware; strong linkage and interaction with other systems; the

environment and human actors; and so-called ‘hidden links’.

As the person responsible for the system, how do you ensure that

- using such a variety of text reports written by many different

authors - your safety conclusions adequately reflect the real hazard

potential? How can you make sure this is done completely, without

contradiction and, above all, in a way that is self-explanatory

and easy to understand, even after the author of the text has

moved on? Is valuable know-how on defects and their effects,

once acquired, used in such a way that it brings advantages to the

system operator, for example in terms of integrated maintenance

concepts, high reliability, and good troubleshooting and diagnosis?

In this white paper, we will explore the role of ‘classical’ or

analogue modelling in safety analyses, and then investigate

some of the tool-based methods, including digital

approaches to model-based safety analysis (MBSA).

"All models are wrong

but some are useful."

George E.P. Box

White Paper Model-based fault and safety analyses of complex systems

© Critical Software. All rights reserved.

Defining key safety
analysis terms
Before we explore the model-based approach to fault analysis, let us first clarify a few terms:

Fault model: A mental, physical,

mathematical, logical or other

description of how a defined

system element or component is

likely to behave in the event of a

fault. For each element, one or

several fault cases (fault modes)

are conceivable, each with its

own behavioural description. It’s

important to note that the effect

description in the system group

is not part of the fault model.

Fault: An origin defect in a

defined module or component

within a system (red in Figure

1). If the module or component

is repaired or replaced, this

defect should disappear.

Error: A discrepancy between

the intended behaviour of a

system element and its actual

behaviour within the system

boundary (yellow in Figure 1).

This is caused by other elements,

not by the component itself.

Failure: A system function

exhibits behaviour contrary to its

specification (orange in Figure

1). An internal fault does not

necessarily lead to a function failure.

If, for example, fault tolerance

techniques or redundancies are

active, the overall functionality

at the system boundary may well

comply with the specification.

Symptom: A behavioural

observation perceived at a higher

system level or at the system

boundary, which gives reason to

draw conclusions about certain

connections and states within

the system (orange in Figure 1).

The observation can be both in

accordance with the specification

and in conflict with it.

Root-cause: A possible system-

internal explanation for a symptom,

in particular a possible internal fault

state (from one or a combination

of several faults), the occurrence of

which can provide a plausible reason

for the observed behaviour at a

higher level or the symptom pattern.

inSig2

inSig1

comp4

comp7

comp1 comp2 comp3 outFunc1

outFunc2
comp5

(needs both)

comp6

(needs one)

outFunc3

(needs both)

Fault

Root-cause

Errors
Failure

Failure

Sympton

Figure 1 Exemplary networked system with errors and effects on functions

White Paper Model-based fault and safety analyses of complex systems

© Critical Software. All rights reserved.

The ‘classical’
analogue way
Terms such as ‘modelling’ or ‘model-based development’ often

trigger thoughts of advanced, computer-based virtualisation

methods leveraging state-of-the-art software tools, which

tend to be used to develop complex embedded systems.

In fact, the term can be understood much more broadly,

and incorporates some classical analogue means to model

safety-critical systems. Here are a few examples:

A) PHYSICAL MODELLING

Probably one of the oldest modelling

methods is to reproduce real

correlations by specific imitation

on a physical replica. This replica

can be used - often on an adapted

scale or in some other simplified

form - to carry out experiments

in a controlled environment and

in a way that is not feasible in

real life. Architectural models of

buildings or laboratory set-ups

of technical plants are typical

examples of physical modelling used

to investigate static or dynamic

behaviour and to draw conclusions

about the real-life counterpart that

may still need to be built, as well as

determining possible optimisations.

In principle, this can also be used

to test the effects of non-nominal

behaviour by ‘injecting’ certain

faults into the replica. For this

purpose, the type of fault must

be known with regard to its basic

behaviour and its possible effects.

For example, in a test setup

focusing on the electrical supply of

an aircraft, faults such as wire cuts

and their effects should be relatively

easy to test. More difficult in this

example would be the deliberate

provocation of short circuits

between different wires, which could

lead to the destruction of model

parts (for example, real subsystem

modules or boards) or even result

in the loss of the entire setup.

Although using a physical model

makes certain experiments

possible, the creation of the model

is time-consuming and costly,

notwithstanding the fact that tests

must be extremely well-planned.

B) MENTAL MODELLING

But even without building a physical

prototype of the product to be

realised, we are much closer to

the idea of modelling than we

often think we are. The reason is

that even the systematic mental

capturing of dependencies, with

the goal of obtaining a better

understanding of the system in

question, is a form of ‘modelling’.

Within an assumed boundary, by

means of known information or a

priori knowledge, we picture certain

elements, internal links, processes

and connections from which we can

conclude the behaviour of the whole

system. We simulate ‘mentally’

to draw conclusions and benefit

from this increase in savoir-faire

during system development.

Indeed, this variant of

the ‘model-based methodology’ can

be found in many projects, often

as an interlinked process. On the

basis of preceding documents, the

expert forms a model of the system

to be developed in their head and,

from the current level of maturity,

analyses and develops it a little

more using their own knowledge.

Finally, the results of their work

are formalised in a document.

A common form of safety analysis

based on mental models is the

failure mode and effect analysis,

or FMEA. By hypothesising a given

functionality within a complex

system network, possible effects

or failure scenarios at the highest

system level are inferred in a

structured way for one assumed

internal fault after the other, as

part of a multi-disciplinary team

approach. The analysis direction

is inductive, i.e. according to the

causality from cause to effect.

The analysis is also carried

out from the bottom up in the

system hierarchy, i.e. from the

components up to the system level.

The opposite way of thinking –

from the observation of failure or

irregular symptoms at the system

boundary down to possible root

causes, is frequently found in

fault analysis practice. This way

of thinking can be seen in the

diagnosis of technical systems, for

example by experienced mechanics

in the workshop when identifying

a component needing to be

replaced. In doing so, they may use

previously elaborated and defined

troubleshooting procedures in

the form of decision trees (DT).

No matter how easy or ‘tool-free’

the mental modelling method

used is, this advantage can also

become a major disadvantage: the

know-how of experts is inherently

linked to the individual and its

transmission to others in the

organisation, and its effectiveness

when said expert is no longer

present, depends on the quality of

text-based documents and charts.

Engineer 1 Safety

engineer

? !

Engineer 3

input input input

write read

Document

write writeread

Document

D
ra
w
conclusion

s

M
ak
e a

ssumption
s

D
ra
w
conclusion

s

M
ak
e a

ssumption
s

D
ra
w
conclusion

s

M
ak
e a

ssumption
s

Image of real system (mental model)

Own knowledge Own knowledge Own knowledge

Figure 3 Chain of mental modelling steps in system development, e.g. for fault analysis.

Figure 2 British wooden horse simulator

to test procedures and process faults

in combat, taken before 1915

https://commons.wikimedia.org/wiki/

File:Horse_simulator_WWI.jpg

https://commons.wikimedia.org/wiki/File:Horse_simulator_WWI.jpg
https://commons.wikimedia.org/wiki/File:Horse_simulator_WWI.jpg

White Paper Model-based fault and safety analyses of complex systems

© Critical Software. All rights reserved.

C) GRAPHICAL MODELLING

The individuality of mental modelling

naturally demands supporting

documentation so as to properly

visualise the model in question.

That is where graphic illustrations,

schema or notations come in,

which should help to make the

author’s train of thought more

comprehensible to others. The motto

‘one system, many views’ can be used

to sum up this concept. By focusing

on selected aspects of the real

system, appropriate simplifications

and standardised design elements

and symbols, it is possible to create

individual graphical models of

reality. SysML users are familiar

with this in the form of the various

predefined diagram types.

Be it SysML notations, drawings,

block diagrams, process diagrams,

electrical or hydraulic plans of

a machine, illustrations make it

possible to better understand

and discuss the dependencies

which exist between parts of a

system and also help to simulate

them mentally. In addition, the

systematic presentation and naming

of the pictorial elements should

be considered, this being key to

ensuring clear and unambiguous

communication with stakeholders.

As well as reliability block diagrams

(RBD), fault trees (FTs) are

probably the best known form

of graphical modelling in the

fields of safety and reliability.

The assumed failure logic of the

system is visualised in a tree-like

structure, deductively determined

by the development team from the

top event down to possible root

causes or combinations thereof.

While only graphically constructed

from blocks for events and

for Boolean operations, FTs

nevertheless allow a quantitative

calculation of the top event’s

probability in relation to failure

probabilities in relation to the

failure probabilities of the most

basic components or nodes.

Graphical models support system

and safety development across the

entire process, from the discussion

of alternative architectures in an

early design phase (in the context of

a preliminary system safety analysis

according to ARP4761, for instance)

and the derivation of safety

requirements, all the way down to

the validation of the final system as

built (like the numerical proof of the

overall probabilities of top hazards).

However, despite their effectiveness

when compared to other forms

of modelling, FTs still possess one

weakness. Conclusions from models

and the assumed behaviour of the

components therein are made in the

human mind, based on individual

and possibly undocumented

assumptions. Thus the quality,

traceability and persistence of the

results ultimately depend on the

individual expertise of the specialists

creating these graphs and their

availability within the company.

Figure 5 Aircraft FHA Preliminary Fault Tree [SAE ARP4761, p. 182]

Figure 4 System diagram, example from ARP4761

White Paper Model-based fault and safety analyses of complex systems

© Critical Software. All rights reserved.

The 'executable'
digital way
This is where actual executable digital models come into play. They

allow for the reproduction of the respective behaviour of the real

system via computer-aided simulation. This technique has been taught

for many decades and is well established in engineering, but so far

has mainly been used to represent and analyse nominal behaviour.

The relevant variables, parameters and constants of units and

functionalities – within a wider framework of assumptions - are captured

in a modelling language and put in relation to each other by equations,

state machines, XYZ-characteristics or other analytical forms. In many

tools supported by graphical user interfaces, the specified input-output

connections between the individual model components create an integrated

and executable mathematical model of stationary or dynamic behaviour.

A) CAUSAL

BLOCK-ORIENTATED MODELLING

Modelling principles which follow

the assumed functional chains of

the system are collectively known

as ‘causal modelling’, otherwise

referred to as ‘block-oriented’

or ‘signal-orientated’ modelling.

Here, the descriptions inside the

model blocks express the clear

dependence of the output variables

on the input variables of each

unit. To better visualise this, the

inputs are often located on the

left and the outputs on the right

in graphical representations or

icons of the model parts. The

graphical arrangement of the

blocks as well as the implicit

evaluation is directional.

A popular representative of this

modelling approach is Simulink.

The system variables previously

determined by system analysis, as

well as the differential and algebraic

equations (DAE) used to describe

the behaviour, are assembled at the

lowest level from the most basic

mathematical operator building-

blocks. Grouped together and

provided with defined interfaces

(‘ports’), this results in reusable new

blocks which are then used to build

the entire mathematical description

model of the real system.

After specifying adequate

initialisation values and input

profiles, the calculation-system can

then be solved by the simulation

algorithm according to the

analytical data-flow, and the

numerical values or time histories

of previously unknown system

variables can be displayed. For many

engineering analysis tasks, this type

of modelling has been common

for decades, and many reusable

cross-project model libraries have

subsequently been developed.

But what about failure and safety

analyses? How does this model

help us to better understand the

relationship between local defects

and their system-wide impact?

You can only analyse by simulation

what has been modelled before.

The description of the nominal

behaviour must therefore be

extended to include models

of faults. This raises some

fundamental questions:

1. How can fault modes of

components be organised

within the model?

Faults in real life are often assigned

to particular components and

have a specific denomination

(‘disconnected’, ‘stuck open’...).

Therefore, in addition to the ‘intact’

behaviour of a system component,

alternative descriptions for one

or even several different fault

modes must be considered in

the simulation model, including

a suitable selection technique.

2. What about the native structure

of the model equations?

Some fault modes, including

purely parametric ones, can

easily be considered in the

existing causal framework, for

example, a numerically flawed

sensor characteristic or a ‘bit

flip’. The causal chain is basically

retained. Other system faults,

however, can impact the entire

structure of the DAE-system

previously established for the

nominal behaviour. For instance,

if irregular topological changes

(e.g. a short circuit in the electrical

network) result in unforeseen

flows and new balance terms, a

significant model modification

would be required [Ref01].

3. Is the assumed causal chain of

calculation still valid?

Maybe, maybe not. For many real-

life faults or fault-combinations

that we want to analyse, the global

input-output behaviour assumed

in the nominal model is no longer

valid. For example, tube leakage

can locally reverse the direction of

flow, or an erroneously powered or

insufficiently safeguarded electric

motor can induce unexpected

voltages in the network contrary

to the assumed normal functional

chain. This can mean changes

to the model in question are

necessary. Or, imagine a fluid-

valve hanging closed: here it is not

enough to just assign a value of

"zero" to the output pressure.

Figure 6 Examples of Simulink models (https://commons.wikimedia.org/wiki/File:Simulink_model_of_a_wind_turbine.tif)

https://commons.wikimedia.org/wiki/File:Simulink_model_of_a_wind_turbine.tif

White Paper Model-based fault and safety analyses of complex systems

© Critical Software. All rights reserved.

Figure 7 Model-based fault analysis within the dependency network: a) Presetting ("injection") of local faults (red) and identification of the affected

system extent and interfaces (orange)

Figure 8 Model-based fault analysis within the dependency network: Presetting a failure case at the interface (red) and identification of possible root

causes in the system network (orange)

Figure 9 Model-based development of safety critical software in the form of a cruise control system

with SCADE (https://commons.wikimedia.org/wiki/File:SCADE-cruise-control-design.png)

Regarding safety, with all these

challenges in mind, the causal

modelling principle therefore raises

challenges in the quantitative

fault analysis of real components.

Such an approach of numerical

simulation can therefore be

best applied to the modelling of

traditionally procedural control logic

and the development of software-

related diagnostic functions or

mitigation and backup strategies.

Beyond numerical simulation,

however, causal input-output

models can nevertheless be helpful

in maintaining a view of the overall

picture when developing safety-

critical systems, including hardware.

The management of many internal

dependencies existing between

requirements, system functions,

envisioned solution principles and

allocation to architectural elements

on different levels is a demanding

task in itself, not to mention

the assignment of adequate

tests. With classic, document-

based procedures, the limits can

quickly be reached, engineering

mistakes creep in, work products

no longer fit together and the

necessary traceability is lost.

Such problems can be avoided

by model-based tools which are

integrated over the entire V-process,

with central data management for

requirements, functions, technical

solutions, components, interfaces,

SW code, documents, amongst

other aspects of the system.

Throughout the development

process, modelling allows for the

visualisation of safety dependencies

in case of failure. For instance,

with the ESCAPE technology, it is

possible to ‘inject’ a fault at any

location in the network and, at the

click of a button, to determine and

indicate system parts potentially

affected by it, just like in a FMEA,

‘downstream’ (Figure 7). In the

opposite direction, the failure of

the toplevel functionality can be

specified and the possible root

causes of this failure identified,

just like in a diagnosis, ‘upstream’

(Figure 8). The advantages

and disadvantages of certain

architectures can be evaluated

and weighed against each other

in the early design phase, and

forgotten links across all system

levels, funtionalities and hardware

units within the entire system can

hence be uncovered [Ref02].

In another category of modelling

tools, the focus is less on the safety

analysis of a system, but rather on

a formally correct and verifiable

methodology for the development

of safety-critical software. Due to

the functional nature of software

systems, the causal modelling

paradigm is also applied here. The

SCADE tool, for example, enables a

consistent representation of state

machines and the internal data

flow, which is used to generate

software code for applications with

the highest safety requirements.

https://commons.wikimedia.org/wiki/File:SCADE-cruise-control-design.png

White Paper Model-based fault and safety analyses of complex systems

© Critical Software. All rights reserved.

Figure 10 Physical system model of an electrical circuit (from: [Ref03]); bi-directional fault effect

B) ACAUSAL PHYSICAL

SYSTEM MODELLING

The need to assume a certain

functional chain and to consider

the calculation direction in advance

is undoubtedly a handicap of

causal modelling. So, would the

model be more successful if it were

based solely on a real physical

system structure describing

it one-to-one, incorporating

components, interfaces,

topologies and hierarchies?

For this declarative representation,

the paradigm of object-orientation

is useful: each model element is an

image of a corresponding type class.

Regardless of whether it stands for

a simple variable data type such as

Current with an assigned Ampere
unit; an interface (port) such as Pin

with several internal variables, a

component such as SolenoidValve,

each with two interfaces for the

electrical and the hydraulic part or

even a complex overall system, such

as DialysisMachine or JetEngine

- every attribute in the model

originates from a well-defined

class, as if it were a blueprint. This

is the principle of the Modelica

language [Ref03], with a wide

range of applications in automotive,

avionics, aerospace, robotics, power

engineering and even non-technical

systems from bio-mechanics to

medicine. Various tools based on

this principle have been established.

The language offers us an

interesting perspective in that

we no longer need to think about

data flow direction. The evaluation

algorithm takes care of whether the

variable within an interface serves

as an input or output variable in

a particular analysis procedure.

The model is therefore ‘acausal’.

This way, all knowledge about

the internal structure and the

behaviour of a real physical element

is described and stored in one

place, encapsulated and accessible

only via the real-life counterparts

(electrical, mechanical, hydraulic,

bus) interfaces. Thus, we achieve an

easily understandable and navigable

model structure, which could also

have originated from an E-CAD

tool (Figure 10) or be derived

directly from the well-known bill of

materials (BoM) in engineering.

This clarity in model visualisation

helps increase system

understanding during the

development phase, avoiding

mistakes and easily linking the

modelling to PDM or QM standard

processes, including part-orientated

nn

p

p

G

p

p

L=0.1C=0.01

R2=100

AC=220

R1=10

pp

nn

n

version management. It is very

intuitive and easy to extend and

use the model for different types

of analyses without having to

change the internal topology.

The know-how investment in the

model is secured, independent

of employee fluctuation. All that

matters is the algorithm.

With regard to fault analyses and

RAMS analyses, the questions

previously posed to causal modelling

can be answered easily here:

everything that belongs to a certain

type of component is stored in

the corresponding model class.

This includes fault mode names,

alternative local behaviour models,

and even specific parameters such

as fault probabilities. This allows for

the activation of single or multiple

faults within the system model

and, using simulation, determine

their effects in all directions - the

FMEA may be automated.

Similarly, the acausal ‘two-direction’

paradigm allows for the evaluation

of the same model in the opposite

direction. Values may be assigned

to model variables at any location

in the system model, even if they

are inconsistent with the nominal

system behaviour. This observed

behavioural pattern constitutes a

‘symptom’ (see Figure 1) that can

be used to deduce automatically

possible root causes with the

help of an algorithm for so-called

‘model-based diagnosis’ [Ref04].

This way, our virtual playground

also helps us to optimise the

internal FaultCode-/BITE-concept

resp. diagnostic coverage (DC) at

an early stage of the process.

Whether through industry-proven

model-based applications for

diagnosis, monitoring and RAMS

analysis; formal languages for

safety-analyses like AltaRica

[Ref05]; or through new ideas like

smartIflow applied for example

to rail systems [Ref06], there is

no question that model-based

safety analysis has in itself become

an exciting area of development

within engineering, not only in

terms of modelling but also as

a methodology and its effects

on personal mindsets brought

to engineering projects.

White Paper Model-based fault and safety analyses of complex systems

© Critical Software. All rights reserved.

The promise of
model-based analysis
‘Model-based’ analysis is a

promising way to maintain a full

system overview and to make

valuable engineering know-

how usable in a digital and,

hence, more sustainable way.

Modelling may seem tedious and

time-consuming at first. Yet this

investment of time and resources

pays off in several ways. By

obtaining a better understanding

of the system and its failure

dependencies, implementing

faster design iterations, and by

optimised backup and mitigation

strategies, modelling done well

can truly revolutionise the way

systems are run and kept safe.

Embedded in a seamless process

chain without ‘media breaks’,

the model becomes the central

knowledge reference and

foundation from which a reliable

process for the development of

safety-critical systems can be

derived. This can serve as an

‘executable specification’ and

can save a lot of V&V effort

when used as a virtual testbed.

Virtualised

system

models

Implementation,

manufacture, assembly

Requirements
System validation,

acceptance test

Sub-system design Sub-system integration

Component design Component test

System architecture System integration

Figure 11 The virtual system as a central reference point in the system development process

White Paper Model-based fault and safety analyses of complex systems

© Critical Software. All rights reserved.

To find out more about our

work, please get in touch:

info@criticalsoftware.com

The Critical model:
how we can help

At Critical Software, we have experience in using modelling

methodologies to guarantee the effectiveness and security

of mission-critical systems in a range of industries, from

automotive and rail to space and aerospace. The software

validation facilities we provide can easily accommodate

the comprehensive testing, verification and validation

required for safety-critical systems across the board.

Our over 20 years’ experience of not only developing, but testing

and verifying complex and multi-faceted systems has given us

the opportunity to innovate. By using the Agile methodology

to develop, test and verify high-integrity systems, as well as

more traditional methodologies like waterfall, we provide

a dynamic approach to developing and validating critical

software which places the customer at its very heart.

References:

[Ref01] Joshi A., Heimdahl, M.P.E., Miller

S.P., Whalen M.W., Model-Based Safety

Analysis, NASA/ CR-2006-213953, University

of Minnesota, Minneapolis, Minnesota/

Rockwell Collins Inc., Cedar Rapids, Iowa;

https://shemesh.larc.nasa.gov/fm/papers/

Joshi-CR-2006-213953-Model-Based-SA.pdf

[Ref02] J. Kaiser, G.F. Soto, X.Tang/J.Li/

G. Guo/C. Wen, J. Brandscheid, EXCEED:

Integrated, model based development

of the E/E-System of CHERY’’s new

vehicle platform, Day of System

Engineering, TdSE 2017, Paderborn,

Germany; http://www.3e-motion.com

[Ref03] P. Fritzson, Introduction to Object-

Oriented Modeling and Simulation with

Modelica Using OpenModelica, Open

Source Modelica Consortium v2012;

https://www.modelica.org/publications

[Ref04] Fasol D., Münker B., Bunus P.,

A Model-Based Safety and Dependability

Methodology for Missile Safety Engineering,

International System Safety Society

Congress ISSC2015, San Diego;

https://icomod.com/mbsa_ISSC2015

[Ref05] Prosvirnova, T., Batteux, M.,

Brameret, P.A., Cherfi, A., Friedlhuber, T.,

Roussel, J.M., and Rauzy, A., The AltaRica

3.0 project for model-based safety

assessment. IFAC Proceedings Volumes,

46(22), 127 – 132. doi: http://dx.doi.

org/10.3182/20130904-3-UK-4041.00028

[Ref06] Lunde R., Hönig, P., Müller C.,

Reasoning about Different Orders of

Magnitude of Time with smartIflow,

University of applied Sciences, Ulm,

Germany; https://smartiflow.bitbucket.io/

https://shemesh.larc.nasa.gov/fm/papers/Joshi-CR-2006-213953-Model-Based-SA.pdf
https://shemesh.larc.nasa.gov/fm/papers/Joshi-CR-2006-213953-Model-Based-SA.pdf
http://www.3e-motion.com
https://www.modelica.org/publications
https://icomod.com/mbsa_ISSC2015
http://dx.doi.org/10.3182/20130904-3-UK-4041.00028
http://dx.doi.org/10.3182/20130904-3-UK-4041.00028
https://smartiflow.bitbucket.io/

We are CMMI Maturity Level 5 rated.
For a list of our certifications & standards �

visit our website.

criticalsoftware.com

info@criticalsoftware.com

