
Model-Based Failure Analysis with RODON
Karin Lunde 1 and Rüdiger Lunde1 and Burkhard M ünker2

Abstract. The model-based reasoning toolRODON supports en-
gineers in their quest for reliable, well-designed technical products,
by providing means to analyze system behavior, especially in case
of failure, systematically. Based on a quantitative product model, it
offers a wide range of analyses, including reliability analyses such
as FMEA and FTA or the generation of diagnostic knowledge such
as diagnostic decision trees. An object-oriented modeling language
enhances the reusability of models and, together with an integrated
design environment and extensive model libraries, considerably re-
duces the modeling effort. In this paper, we describe the modeling
framework and the model analyses supported byRODON (consid-
ering as example the model of a comfort seat), and characterize the
technology behind them. Finally, we discuss the experience gained
during the development ofRODON.

1 Introduction

During the life cycle of a technical product, various analysis tasks are
necessary to ensure system safety and soundness of design, such as
requirements analysis, design, reliability analysis, optimization and
maintenance. Different teams specialized in certain phases of the de-
velopment process have to work together in a highly distributed en-
vironment. The more people are involved, the more the exchange of
knowledge becomes a bottleneck.

Model-based engineering aims to incorporate as much knowl-
edge as possible in formalized, computer-interpretable models and to
share those models between the different phases of the engineering
process. The scope of those models is not fixed and can include very
different aspects of structural and functional knowledge. To support
knowledge reuse, domain specific, product specific, and task specific
knowledge has to be separated. The goal of model-based engineering
is to improve process efficiency as well as product quality by autom-
atization and to reduce errors caused by misinterpretations.

Since the introduction of CAD systems in the early 80s, the ex-
change of formalized structural product knowledge has continuously
increased. Today, CAD models originating from the design phase are
reused in almost all later phases, for example to export part specifi-
cations for subcontractors like wiring harness suppliers, or to support
product management systems. There are also promising examples for
the reuse of behavioral models, like model-based code generation for
embedded control units (MATLAB tool suite) or failure and reliabil-
ity analysis (MDS [9], AutoSteve[11], or AUTAS [10], to name only
a few tools).

In this paper, we present the model-based reasoning toolRODON.
It provides a wide range of analyses, with a focus on failure analysis

1 University of Applied Sciences Ulm, Germany, emails: k.lunde@hs-ulm.de,
r.lunde@hs-ulm.de

2 Sörman Information & Media AB, Heidenheim, Germany, email:
burkhard.muenker@sorman.com

Figure 1. RODON’s contribution to engineering tasks within the product
life cycle

(see Figure 1). Based on a component-oriented, hierarchical model,
which describes component behavior in terms of mathematical rela-
tions,RODON allows to

• simulate the behavior of the system in any state (which is part of
the model);

• perform reliability analyses such as FMEA and FTA;
• compute optimal architectures for safety-critical applications;
• generate reliability block diagrams and failure trees;
• generate diagnostic knowledge such as diagnostic rules and diag-

nostic decision trees;
• perform interactive diagnoses with measurement proposal.

Since building and converting models between tools was identified
as a major source of engineering effort, we attach great importance to
the reusability of models. In the following, we describe the modeling
framework and characterize shortly the algorithms which are at work
behind the scenes to facilitate all those analyses. In Section 4, typi-
cal analyses are demonstrated considering as example a comfort seat
model. A short discussion of lessons learned completes the paper.

2 Modeling in RODON

An object-oriented modeling language together with an integrated
design environment and extensible hierarchical model libraries are
the building blocks of a modeling environment which allows the en-
gineer to create highly reusable and maintainable models with a mod-
erate effort. InRODON, there are basically three modeling modes
which differ widely in their degree of automation:

• The model topology can be imported automatically from CAD
data, where component models are chosen from existing libraries.

• A model can be assembled graphically using existing model li-
braries (drag and drop).



Figure 2. The model composer, at the left side the hierarchical library.

• A model can be built from scratch using the object-oriented mod-
eling language Rodelica3.

In practice, these modeling approaches are frequently combined: The
main structure of a model may be imported from a CAD tool, while
some parts can be built re-using parameterizable library components,
and company-specific parts have to be modeled by the engineer him-
self. The degree of possible automatization depends on how accu-
rately the model structure matches the structure of the artifact. All
models are organized within hierarchical libraries which can be ex-
tended continually by adding new models.

Object-oriented modeling Modeling inRODON is component-
oriented, which means that the structure of the model reflects the
structure of the artifact itself rather than the signal flow. In particu-
lar, this is essential for model-based diagnosis, where the engineer
is interested in identifying the component whose failure caused the
observed faulty system behavior. More important, a failure of one
component can change the signal flow significantly, which restricts
the use of a signal-flow-oriented model to certain behavior modes.

It is only a small step from a component-oriented to an object-
oriented modeling paradigm. All essential properties of a compo-
nent type are subsumed in a model class. It describes the interface of
the component to other components, the substructure or the quanti-
ties which characterize its behavior, and their interactions in terms of
constraints.

The concept of a model class is very general. Model classes rep-
resent components as well as connectors or physical quantities. They
consist of attributes, behavior sections containing the constraints, and
extends statements which declare base classes whose attributes
and behavior are inherited. An attribute is defined by a name, which
must be unique within the class, and a type, which is a model class (or
an array of those). As primitives, Rodelica provides a set of built-in
classes, e.g.Real or Interval . Besides, attributes andextends
statements can contain parametrizations. Connections between the
connectors of components are expressed byconnect statements

3 Rodelica is a dialect of Modelica, which is a standardized object-oriented
language to describe physical systems in a component-oriented and declar-
ative way (seewww.modelica.org ). It differs mainly in the behavior
representation, by using constraints rather than differential equations. This
deviation from Modelica is due to the requirements of model-based diag-
nosis, where model behavior is often underdetermined (see [4]).

within the behavior section and translated into constraints at instan-
tiation time.

The concept of inheritance greatly enhances the reusability and
maintainability of model libraries: General knowledge can be encap-
sulated in more abstract base classes which are likely to be reused
frequently. All changes which are made to a base class propagate
automatically to all classes inheriting from it.

Uncertainty and constraints To solve diagnostic problems, ex-
plicit representation of uncertainty is needed. It may sometimes be
hard even to predict a system’s nominal behavior exactly. To scope
all possible kinds of faulty behavior is in general infeasible. For some
components, the number of all possible fault behaviors is infinite
(consider e.g. a leak with arbitrary diameter in a pipe). And even
if the number is finite, the number may be too high to be managed
efficiently (e.g. shorted pins in a connector block).

Constraint techniques provide a convenient framework to repre-
sent this kind of behavioral knowledge. Arbitrary dependencies be-
tween values of different variables can be expressed by constraints
which represent relations corresponding to the underlying physical
laws. The representation is declarative. It abstracts from details how
to perform simulations. The modeler does not need to direct relations
by transforming equations into assignments or arrange sets of equa-
tions in a special order. It just suffices to formalize the relationships
between the relevant variables. This abstraction makes it possible to
arrange knowledge in a context-free component-oriented way. Espe-
cially the fact that constraint networks support reasoning about sets
of possible values rather than exact values makes them well suited
for diagnostic reasoning.

Constraint and data types The built-in classes can be understood
as the data types provided by the modeling language. InRODON, the
most important data types represent sets of integer numbers (built-
in classDiscrete ), sets of boolean values (Boolean ) or interval
sets (Interval ). Besides, the usual data typesInteger , Real
and String are available, as well as arrays and records. Several
kinds of constraints are supported, providing the means to combine
the quantitative and qualitative modeling approaches as appropriate:

• algebraic (in-)equalities,
• boolean relations (as formulas or truth tables),
• qualitative relations (tables),
• alternative behavior: conditional constraints and disjunctions,
• spline interpolation (for measured data or characteristics).

In some applications, it is adequate to use a directed modeling ap-
proach. For this reason,RODON supports assignments and algorith-
mic sections in models where values can be computed using elements
known from programming languages, e.g. loops. Thus, the modeler
can choose the modeling style and the level of abstraction which are
particularly suitable for the task at hand with great flexibility.

An integrated design environment RODON’s COMPOSERmod-
ule supports the user in assembling, editing and debugging models.
To the left, the library of the current project is shown. The user can
choose between the compact tree view or a palette view, where the
icons of selected library packages are listed. To the right, one or sev-
eral class editors may be active (see Figure 2).

Each class editor features three main panels: the layout pane, the
Rodelica pane, and the icon pane. In the layout pane, a model can
be assembled graphically, by dragging classes from the library and



dropping them in the desired location on the canvas (thereby creat-
ing an attribute of the corresponding type), renaming and connecting
them. A dialog assists the user in the parametrization, by showing
the available parameters of the selected attribute and their admissible
values. Besides, documentation texts can be assigned to the class as a
whole and to each attribute. From the layout, a Rodelica text is gen-
erated, which can be viewed and edited after switching to the Rodel-
ica pane. The Rodelica text and the layout view are synchronized —
changes made in the Rodelica pane are visible after switching back
to the layout pane. Finally, in the icon pane the user edits the external
view at attributes which use the current class as their type, by assign-
ing an icon and arranging connectors and labels around it. At any
time, it can be checked whether the recent changes are syntactically
correct and compatible with the project library.

3 Behind the scenes: The reasoning framework

The approach to model-based engineering followed byRODON is
strongly inspired by the general diagnostic engine (GDE) [1] and its
extensions for handling different behavioral modes [2] [13] and state
transitions [14]. It is based on a reasoning framework which incor-
porates concepts from the classical approach to model-based diagno-
sis, such as component-oriented modeling, dependency tracking and
conflict directed search for candidates. Reasoning is divided into two
layers.

The first layer is the prediction layer. In this layer inferences are
drawn to compute logical consequences based on a behavioral model
and information about relevant system states (e.g. assumed fault
mode assignments, symptoms, measurement results or top events).
We describe technical systems as discrete-time systems. Constraints
represent relations between different variables at the same point in
time, and difference equations the evolution of state variable values
from the current to the next point in time. During behavior prediction,
two main analysis steps are performed in a loop.

Given value assignments of at least the dynamic state variables,
the intra-state analysis tries to determine the values of all variables at
a certain point in time. This step is an iterative domain reduction step.
Based on the specified relations between the variables, the constraint
solver successively prunes out those regions of the variable domains
which do not occur in a solution.

The results of the intra-state analysis are fed into the inter-
state analysis, which checks by evaluating the difference equations
whether another state should be added to the current sequence, which
value sets to assign to which state variable, and which time increment
to use. By allowing both continuous and discrete time variables as
state variables, events as well as continuous dynamic behavior can
be simulated.

The second reasoning layer is the explanation layer. The methods
applied here aim to find input parameter settings for the model such
that it behaves consistently to some given external observations. In
diagnosis, this includes at least assignment of a value to each fault
mode variable. Additionally, a search in the possible space of other
unknown inputs like switch states or hidden memory states can be
included. Potential explanations are calledcandidates. The search
for the most plausible candidates is determined by

• the definition of the candidate space, which is given by a set of
variables and their possible values,

• the conflict information, which is obtained in the prediction layer
by tracking the dependencies between the input parameters and
their consequences during intra-state analysis, and additionally by

back-mapping [14] if a sequence of more than one state is ana-
lyzed, and

• some candidate orders defining minimality and plausibility.

Over the past years, this reasoning framework has been refined and
extended in order to increase the reasoning efficiency without re-
stricting the flexibility and expressiveness of the modeling paradigm.
Most important are the following two modifications.

Inference completeness was improved by combining local con-
sistency techniques with interval arithmetics, domain splitting and
network decomposition (see [6]). The constraint solver extends the
branch&prune algorithm (known from continuous constraint satis-
faction problem solving, see [3]) by a network decomposition step
and an interface to a reason maintenance system.

The reasoning efficiency was greatly improved by replacing the
ATMS by a light-weight dependency tracking tool which we call the
value manager (see [7]). In contrast to classical reason maintenance
systems, the value manager actively controls resource consumption
by applying data reduction techniques. Additionally, it incorporates
strong focusing and data buffering.

A detailed account about the technology behindRODON can be
found in [8].

4 Applications

4.1 Failure analysis of a comfort seat

In the following, we demonstrate several analyses provided by
RODON by means of a simplified model of a comfort seat, like those
in the first class of an aircraft. The seat model comprises an overhead
unit featuring a reading light and visual signals, an audio/video unit,
and three actuators to move the seat back horizontally and the foot
rest both vertically and horizontally. Those elements are controlled
by the operation unit which is situated in the arm rest. The seat con-
trol unit (SCU) contains drivers which process the incoming electric
signals and drive the corresponding actuators or transmit messages
via a bus to the central cabin control unit (CCU), as needed. The di-
agnostic trouble codes set by those drivers can be used by the service
to locate faults.

In practice, the CCU controls all seats in the aircraft. From here,
signals can be transmitted to all seats at once, e. g. to switch off the
audio/video systems in case of a power drop. Each seat is connected
to the CCU via a bus (modeled by electrical wires and connector
blocks). The scope of the current model is restricted to only one seat
and the CCU. Overall, the model consists of 183 components, 2540
variables and 2361 constraints.

Model-based diagnosis Consider a test of the comfort seat which
involves checks of the three actuators, in the following order: Move
the seat back forwards, then move the foot rest upwards, then move
the foot rest inwards, and move the seat back backwards again.

When performing the test, it is observed that the seat back
moves correctly, but the foot rest does not move at all. These ob-
servations, together with the switch positions in the four states
of the test, are used as additional information for the diagno-
sis. Figure 3 shows the diagnosis: among all single faults there
is only one candidate that can explain the system behavior in
all four states, namelyseat.operationUnit.FootRestControl

disconnected ; the next candidate is already a double fault. The
dots at the end of the diagnosis denote the possibility of further dou-
ble or higher order explanations. The diagnosis can be continued



Figure 3. Model-based diagnosis of the seat system

upon request and would examine the candidates in the order of de-
scending probability.

If the available information is insufficient to narrow down the pos-
sible explanations as far as in the last example, the tool is able to
propose measurements whose results might help to eliminate can-
didates. Consider only the first two steps of the testing procedure
above, with the same observation. Without the information about the
outcome of the third test step, the model-based diagnosis finds alone
13 single faults which explain the malfunctioning foot rest. In such
a situation, the interactive entropy-based measurement proposal may
be used to restrict the set of candidates. The proposed measurements
are listed in the order of their information gain, although the user is
not bound to perform the measurements in that order.

Reliability analysis Comfort seats are not safety-critical systems,
but frequent failures would annoy the passengers and are therefore to
be avoided. A thorough reliability analysis in the design phase helps
to reduce the probability of failures.

A common kind of reliability analysis is a failure mode and effects
analysis (FMEA).RODON is able to generate the first columns of
an FMEA table automatically. To this end, the user specifies which
single faults and which operational states of the system are relevant
for the analysis. The Cartesian product of all those operational states
with the set of fault states (plus the stateSystem ok) defines a so-
called state space. An automatic simulation control module can then
be used to perform simulations systematically for each state of the
state space and to write the simulation results into a database, which
we call state database (SDB). Finally, the desired table can be gener-
ated automatically, by evaluating and abstracting the SDB.

In Figure 4, a part of an automatically generated FMEA for the
seat system is shown. TheSDBVIEW module ofRODON supports
a great number of different views at the collected simulation re-
sults, among them a fault-oriented and an effects-oriented view. Cus-
tomized table formats can be defined according to the requirements
of the user.

4.2 Further applications

In addition to the systematic computation of an FMEA, the state data
base can be used to generate other knowledge representations, like
diagnostic decision trees or diagnostic rules.

Diagnostic decision trees are used in the service bay to guide the
mechanic through a failure analysis with minimal effort and costs. In
a recent press release [12], Volkswagen confirmed that theRODON-
generated test programs provide increased service quality concerning
the maintenance of vehicle electronics.

Diagnostic rules represent a compact, compiled version of the
model which can be evaluated efficiently. Therefore, diagnostic rules
are well-suited for onboard diagnostics, where resources are usually
scarce. For instance, the rules used in the onboard system’s diag-
nostics (SD) of the Mercedes SL- and E-classes were generated by
means ofRODON.

For the reliability analysis of safety-critical systems, it is usually
not enough to calculate the failure probabilities with respect to single
faults (compare Figure 4). In such a case,RODON’s special reliabil-
ity module may be of use. For models which observe certain mod-
eling conventions, it is able to compute minimal cut sets and failure
probabilities for safety-critical functions algebraically. In addition, it
generates the corresponding customary representations, namely reli-
ability block diagrams and failure trees.

5 Conclusion

About seven years ago,RODON 3 started as a pure model-based di-
agnosis software but evolved gradually into a life-cycle support tool.
The change in scope had mainly the following reasons, derived from
our experience with various industrial customer projects:

• Besides the necessity to improve the diagnostic process with
respect to flexibility and reliability, customer projects showed
clearly that there is a growing need for automated diagnostic
knowledge generation. Due to increasing system complexity, ex-
ploding variant diversity, and shortening product development



Figure 4. Part of an FMEA of
the comfort seat system.
To extend the FMEA table,
the model has been enriched
with probabilities, for all com-
ponent fault modes in the
model. During SDB genera-
tion, in every state a proba-
bility pHealthState of the
overall system is computed and
written to the SDB, based upon
the individual probabilities and
with respect to the current fault
state. As a consequence, this
FMEA table provides, as an
extra information (second col-
umn), a lower bound for the
probability that a certain effect
occurs.

cycles, diagnostic knowledge generation moves steadily from a
practical experience-driven level towards a more theoretical level
based on reasoning about construction data. For data process-
ing and exchange, formal product description formats are needed,
which cover structure as well as specified behavior. Component-
oriented models like those used in model-based diagnosis are well
suited for this purpose. To be able to serve as a vehicle for knowl-
edge transfer, models must be generated in early stages of the
product life cycle. But engineers which are involved in those early
stages will spend time on modeling only if they benefit from this
effort. This requires the modeling tool to provide additional func-
tionality which helps them performing their own tasks.

• Modeling is always an investment since it consumes the expen-
sive time of engineers. To maximize the return of invest, general
reusable models should replace special purpose models in future,
and be exploited wherever possible. Reliability analysis and diag-
nosis are related in many aspects. The needed product knowledge
largely overlaps, and the level of abstraction in the knowledge
representation is comparable. Additionally, common analysis al-
gorithms can be used in both tasks. By extending the functionality
of a model-based diagnostic tool to support reliability analysis,
obvious synergy effects can be obtained.

• Compared to pure simulation approaches, our constraint-based
approach with its ability to represent fuzziness and uncertainty
explicitly gives the modeler more flexibility in his choice of ab-
straction level. This includes very high level abstractions, possibly
qualitative ones, which are especially well-suited for very early
stages of the product life cycle.

Our approach is well suited for realistic engineering applications (see
also the examples in [5] and [8]). The main functional advantages in
comparison to pure simulation approaches are the support of conflict-
directed search strategies by dependency tracking, and the coverage
of ranges of possible behaviors by set-valued reasoning about system
behavior.

This additional functionality is not provided free of charge. For
behavior prediction, pure simulation engines are significantly faster
than the algorithms used withinRODON. Although reason mainte-
nance can compensate part of this difference, performance still re-
mains a major issue when faced with the analysis of large systems.

Further improvements seem to be possible by combining numerical
with algebraic methods. Especially in component-oriented models of
electric circuits, a high amount of constraints consists of simple lin-
ear equations, which can easily be simplified by algebraic transfor-
mations. Therefore, the integration of such algebraic transformations
into the reasoning framework seems to be a promising direction of
further investigation.

REFERENCES
[1] J. de Kleer and B. C. Williams, ‘Diagnosing multiple faults’,Artificial

Intelligence, 32, 97–130, (1987).
[2] J. de Kleer and B. C. Williams, ‘Diagnosis with behavioral modes’, in

Proceedings of the IJCAI’89, pp. 1324–1330, (1989).
[3] P. Van Hentenryck, D. McAllester, and D. Kapur, ‘Solving polynomial

systems using a branch and prune approach’,SIAM Journal on Numer-
ical Analysis, 34(2), 797–827, (April 1997).

[4] K. Lunde, ‘Object-oriented modeling in model-based diagnosis’, in
Proceedings of the First Modelica Workshop, Lund, (2000).

[5] K. Lunde, ‘Ensuring system safety is more efficient’,Aircraft Engineer-
ing and Aerospace Technology, 75(5), 477–484, (2003).

[6] R. Lunde, ‘Combining domain splitting with network decomposition
for application in model-based engineering.’, in19th Workshop on
(Constraint) Logic Programming W(C)LP 2005, ed., A. Wolf et al., Ul-
mer Informatik-Berichte, (2005).

[7] R. Lunde, ‘Introducing data reduction techniques into reason mainte-
nance’, inProceedings of DX06, Burgos, Spain, (2006).

[8] R. Lunde,Towards Model-Based Engineering – A Constraint-Based
Approach, Ph.D. dissertation, Universität Hamburg (to appear), 2006.

[9] J. Mauss, V. May, and M. Tatar, ‘Towards model-based engineering:
Failure analysis with MDS’, inProceedings of ECAI 2000, Berlin, Ger-
many, (2000).

[10] C. Picardi, L. Console, and F. Berger et al., ‘Autas: A tool for supporting
fmeca generation in aeronautic systems.’, inProceedings of ECAI 2004,
Valencia, Spain, pp. 750–754, (2004).

[11] Chris Price, ‘AutoSteve: Automated electrical design analysis’, inPro-
ceedings of ECAI 2000, Berlin, Germany, pp. 721–725, (2000).

[12] Volkswagen Media Services. Reliable Volkswagen-electronics by new
diagnostics - Improved service quality in VW workshops. press release,
February 2006. http://www.volkswagen-media-services.com.

[13] P. Struss and O. Dressler, ‘Physical negation: Integrating fault models
into the general diagnostic engine.’, inProceedings of IJCAI 1989, pp.
1318–1323, (1989).

[14] M. Tatar, ‘Diagnosis with cascading defects’, inProceedings of ECAI
1996, Budapest, Hungary, pp. 511–518, (1996).


