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Abstract 

Model-based methods are becoming more prevalent to support system development processes while in the field of 
Safety and Dependability (S&D) this adoption is slower. This contribution reports about model based S&D 
engineering along the V-model from concept to operation phase in an industrial application. In the concept phase, 
the design engineer has the complex task to find an architecture fulfilling safety, reliability, availability and 
testability targets. We propose a qualitative modeling approach in which, during the early stage of design, models 
can be quickly built to support the full range of S&D analyses such as: computation of cause-effect relationships, 
automatic generation of FTAs, automatic generation of RBDs, system availability prediction or systematic 
evaluation of the Diagnostic Coverage. At this stage, the qualitative model supports the system and subsystem 
specifications’ validation process and provides a systematic framework to reduce the risk of not meeting the 
RAMST targets. Later in the development cycle a full quantitative model is built (semi-automatically from 
importing the ECAD-net lists) using component model libraries. While maintaining drawing set consistency of 
analysis results, this final model quickly unveils the safety impacts of design changes, enables automated 
computation of even double-fault FMECAs and supports model-based diagnostics during operation of the system. 
 
 

Introduction 

With the publication of the Development Standards for IT Systems of the Federal Republic of Germany in 1997 the 
V-Model 97 entered into force as standard for all civil and military federal agencies. The current V-Model (V-
Modell XT 2006) shown as the blue path in Figure 1 is designed as guidance for planning and executing 
development projects, taking into account the entire system lifecycle.  
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Figure 1: Safety Engineering Activities along the V-Model 

The V-model defines the results to be achieved in a project and describes the actual approaches for developing these 
results.  
All safety engineering activities, i.e. development of system functionalities to reduce all safety risks to an acceptable 
level, are allocated along the V-Model as illustrated in the yellow path in Figure 1. Starting from the concept phase, 



the safety engineer has to find a safety concept to mitigate the outcome of the preliminary hazard and risk analysis. 
As information is highly dynamic and quick evaluations are needed, he needs to be embedded in the core project 
team. On the other hand, however, he has the task to find an S&D architecture fulfilling all safety, reliability, 
availability and testability targets and to define the full set of S&D related requirements. This ambivalent situation 
and the effort required for repeating and updating analyses and documentation often leaves little time for further 
iterations, resulting in sub-optimal designs.  In this paper we present an approach, how the necessary S&D analyses 
such as cause-effect relationships, Fault Tree Analysis (FTA), Reliability Block Diagrams (RBDs), specification of 
Mean Time Between Failure (MTBF)-values, availability prediction or evaluation of the Diagnostic Coverage (DC) 
can be computed in a modular, quick and reusable way, thus freeing engineering resources for higher level tasks like 
system optimization. 
 
 

Model-Based Analysis for the Design Phase: A Qualitative Approach 

Introductory Example:  In spite of many norms, standards and internal guidelines defining an obviously seamless 
process, safety development and assessment in many organizations is marked by many proprietary tool solutions and 
data repositories. Reuse of determined results in later analyses often requires manual work causing effort and 
potential consistency errors. 
It is obvious that the advantages of centralized model-based support as already harvested in the classical system 
engineering process will also provide benefit when analyzing the faulty behavior of systems. 
This section introduces a first view into a modeling approach considering local component faults and their 
propagation to potential failure of system functions in a purely qualitative way. Nevertheless, the approach already 
covers the full hierarchical system architecture and supports the full range of RAMST-analyses based on the same 
model being quickly set up. Especially during the concept phase, it supports system and subsystem specifications 
and definition of consistent safety requirements. Here we first introduce the modeling approach and the potential 
analyses along a small, illustrative example, before showing its benefit on an industrial example in a later chapter. 
The example is the simplified redundant auxiliary power supply of a nuclear power station; see Figure 2a). The bus 
bar, that provides auxiliary power to the internal operation system (bottom right) is fed by the power generated by 
the turbine or alternatively from an external source (top). Here both switches are assumed to be activated. 

 

Figure 2: Auxiliary Power Supply: a) Block Diagram b) System model 

The block diagram visualizes designated hardware components composed in an anticipated architectural design. 
However, system requirements specify not hardware solutions, but designated functions on top level. This 
functionality is provided by certain chains of hardware components at certain locations within the architecture, here 
indicated as green ovals in the block diagram (Figure 2a) respectively rectangles in the model (Figure 2b), 

• Func 1 / F1 (OR-loss): “Provide redundant supply” (i.e. both switch outputs energized) 

• Func 2 / F2: (loss): “Provide Aux power” (i.e. auxiliary bus is energized) 

The state of the blocks F1 and F2 express the status of functional chains w.r.t. correct functionality. Each function 
can fail if the component at the end of the functional path doesn’t perform as expected. This is the case either a) if it 



is defective or b) if one or several of its own suppliers fail. From this simplified reasoning viewpoint – similar to 
troubleshooting conclusions – the system behavior may be expressed by Boolean logic.  
Dependent on the number of its local inputs and its internal logical behavior, we have implemented a library of 
generic model classes using a Modelica©-like approach (Modelica 2014). 
This allows quick assembly and evaluation of anticipated architectural concepts by graphical instantiation of each 
system component in the modeling environment. As shown in Figure 2b), the model clearly reflects the original 
system structure, including the 2 functions, represented as rectangular boxes.  
Model blocks of each element may be enhanced by additional parameters, like mtbf values or thresholds for failure 
probabilities for the top-level functions, see annotations in Figure 2b). Insight into the modeling approach and 
support of RAMST-analyses will be provided in the following sections. 
 
General Functionality:  The model example above describes each of the two power supply paths by chains of 
“SiSo”-models, representing components following the “single input, single output”-pattern. All classes in the 
library are structured in an object-oriented way, delegating general declarations to base classes and allowing any 
level of hierarchy. The following piece of code (see Figure 3) shows some features of the modeling approach. 
  

 
Figure 3: Example model code excerpt of SiSo-class 

1. The declaration of a Discrete-valued Failure Mode-variable fm allows distinguishing different behavior modes 
of the component. With a value range starting at 0, indicating nominal behavior, in this example the maximal 
value is 1, here meaning that the component fails according case a) in the previous section. The variable type 
allows specification of several sub-properties, e.g. assigning the inverse of parameter mtbf as default of the 
failure rate. By default a value of 0 is assumed for fm, unless it is modified by the internal algorithm (see below) 
or externally by the user, allowing explicit fault injection into a system. 

2. The specification of functional constraints between the interface and internal variables in the behavior-section 
of the model class. Whereas also complex dependencies can be specified, in case of the qualitative model 
library only one statement suffices to determine the Boolean value of the output-signal in relation to the input-
signal and the local fm-value. 

Dependent on the value of local variables specific graphical appearances of the model icons can be assigned. The 
blue color in the evaluated model shown in Figure 2b) indicates the expected nominal status “energized ”. 
 
Reliability Analysis:  Based on a) the system topology assembled in the model diagram as shown above and b) the 
logical functionality assigned to the component classes and thus instantiated in each particular component model, 
the top-level functions can be analyzed automatically. After selecting their status-variable within a special 
Reliability-module of the model-based evaluation environment the inherent mathematical dependencies are 
traversed backward symbolically, up to the starts of the functional chains. 
After optimizing the implicit Boolean structure the reliability analysis results for each function are shown 
graphically as interactively evaluable Fault Tree (see Figure 5a below) and  Reliability Block Diagram (see Figure 
4a) for each function. The numeric value table displays the specified max threshold of the failure probability, the 
actual value and the reserve (see Figure 4b) per function. Function specific highlighting of violated reliability values 
immediately points out weaknesses of the designated architecture. 



 
Figure 4: Results of Reliability Analysis a) Hierarchical RBD for F1 and F2 b) Comparison of failure probabilities 

Safety Analysis:  If the consequence of a malfunction in functional chains is safety critical, safety engineering has to 
assure that the risk of the occurrence of this malfunction is mitigated to an acceptable level. The engineer can 
modify the safety architecture or increase and decrease the reliabilities of the components to achieve the safety 
targets. The established method for this task is FTA, a graphical method supported by numerical evaluation engines, 
for the evaluation of the failure logic and the probability of system malfunctions. 
The usage of the above described system model as a basis to calculate fault trees allows a more interactive and 
intuitive analysis method. Due to the component-oriented setup of the model, its hierarchical topology can directly 
be browsed in the model viewer. The environment not only displays computed values of system variables but also to 
set them interactively.  
One option is to overwrite the expected value derived in a nominal-behavior simulation by a value observed in 
reality or just assumed. After having specified that function F2_ProvideAuxPower is lost (see Figure 5b), this 
obviously conflicting value nevertheless can be propagated through the network of Boolean – or more generally: 
physical – constraints. 
 

 
Figure 5: Safety Analyses for lost function F2 a) via Fault Tree b) via Model-based Diagnosis 

Since the nominal behavior does not give an explanation, the inherent fault model of each component is also taken 
into account. The evaluation engine follows the extended General Diagnostic Engine “GDE+” for model-based 
diagnosis (Heller, Struss 2001). Automatically and systematically it checks the explainability of the specified 
symptom by any fault model or a combination thereof and lists them, together with the individual probability of this 
diagnostic candidate (see Figure 5b, bottom). Animations in the model graphics display the root cause component 
(here indicated with red X) and the affected system parts (here white for “de-energized components” or red for “lost 
functions”), giving the analyst an immediate impression on other lost branches or functions. The displayed 
probability sum of all root causes in fpmh matches the failure probability of the top event in the FTA above; 
compare top-node value as displayed in a) and total sum resulting in b). 



Another method to support the engineer in early concept evaluation is the automatic consecutive activation of each 
modeled fault mode followed by a system simulation in a batch process and the logging of potentially interesting 
top-level behavior variables. From this pool of pre-computed analysis results automatically an FMEA-table can be 
generated and formatted according to tailored templates. Since this process is highly automated, consideration of 
single, double or higher order faults is just a matter of settings in the evaluation environment and computing power. 
 
Testability Analysis:  Once a component-oriented system model exists, any variable within the model may be 
analyzed for its benefit in testing the system resp. its contribution to Diagnostic Coverage. This is simply done by 
marking all the superset of potentially helpful variables by a textual identifier. Due to the object-oriented structure of 
the modeling language, each variable is considered as object and has sub-attributes (see also see Figure 3). Text 
labels can be arbitrary chosen or selected from some pre-defined categories, e.g. for “observations”, “fault codes”, 
“voltage measurements” (in full physical system models, see below), etc.  
Simulating and logging a wide range of nominally or irregularly possible system behaviors by the same batch 
process as described in the previous section results in a database of analysis results. Smart filtering mechanisms 
allow to evaluate easily, if there are potential faults not detected by any measurement, leading to NFF-problems (no 
fault found) or if a specific sensor reading or BITE (built-in-test equipment) signal does not contribute to fault 
detection procedures at all and may be skipped, thus opening paths to reduce hardware in the system. 
 
Availability Analysis:  Finally the qualitative model also allows availability analysis of defined system functions 
early in the development process. In addition to the already defined mtbf-parameter another parameter representing 
mttr (mean time to repair) is added to the declaration part of the component base class. As an extension to the 
Boolean behavior description mentioned above (see Figure 3) also the local arithmetic to compute the numerical 
values of availability A and non-availability N can be assigned to the generic model classes. Their standalone values 
for this particular component are determined according the well-known equations (1) and (2). 

A = mtbf / (mtbf + mttr)  (1) 

N = mttr / (mtbf + mttr) (2) 

Besides these, the availability of the output signal of this component also depends on the supply availability 
according to the arithmetic shown in Figure 6. Results of this extension in the context of the overall model can be 
seen in Figure 2b). 

 
Figure 6: Arithmetic to compute Availability (A) and Non-Availability (N) within component class 

Industrial application - missile system safety architecture: Figure 7 shows the application of the qualitative method 
for the safety concept of a guided missile with the subsystems (from left to right): seeker (not modelled, as not safety 
critical), weapon computer, data link, power supply, SAU and warhead, dual stage propulsion and actuator. The 
main system hazards, like premature warhead initiation, inadvertent motor ignition and malfunction of flight 
termination are modeled as external function-blocks as described in the introduction (see Figure 7, upper right part). 
 

 
Figure 7: Qualitative Missile Safety Architecture  



 
The fault trees of these events can be generated and displayed on the fly and the safety engineer can evaluate the 
results interactively. In Figure 7 the consequence of the inadvertently set input signals “release consent”, “fire” and 
“umbilical separation” (the three boxes with red X) are analyzed correctly to fire the booster motor. This example 
shows the advantage to interactively analyze the consequence of selected house events i.e. component failures. 
Figure 8 shows the computed fault tree for the system hazard “warhead detonation”. It would also easily be possible 
to pre-inject faults into the virtual system and evaluate the remaining safety or reliability margin. 
  

 
Figure 8: Computed Fault Tree for Hazard "Unintended Initiation of Warhead" 

Once the model is established and approved in discussions with the relevant component specialists, the safety 
engineer can interactively optimize the system safety architecture. He can then determine and consolidate the safety 
concept and specified values for the component reliability properties. 
 

Model-based Analysis for the Realization Phase: A Quantitative Approach 

After the development of the system has started with the construction and implementation of hardware and software 
components (i.e. the design phase is moving up on the right side of the V-Model), the methods for safety 
engineering change significantly. It is no longer sufficient to continue with the qualitative model. The needed 
models from this phase on have to represent the physical behaviour with its nominal and erroneous functionalities. 
 
Quantitative Modeling of components: Following the approach for physical system modeling similar to Modelica©, 
the physical behavioral description of a certain type or category of elements is specified in exactly one place, i.e. the 
model class representing this category. This class description contains a declaration part and a behavior-part.  
 

 
Figure 9: Physical component modeling: a) Model Library b) Code for physical model c) Graphical icon definition 

All local variables, parameters and other internal properties are declared in a typed manner, as well as the external 
interfaces. These ports may recursively contain variables themselves – e.g. for voltage U, current I in electrical or 
force F in mechanical applications – and are the handles that allow to connect instances of separate classes to each 
other and to communicate and propagate values. As can be seen in the upper part of Figure 9b), the failure mode 
variable fm, already introduced in Figure 3, in this example is declared to indicate two fault modes, both of which 
may be assigned a value for their occurrence probability (i.e. the failure probability). 



 
Each behavioral mode is described by its mathematical-physical constraints in the behavior section of the class. The 
example code in the figure shows a current balance equation – referring to the current symbols i of the two ports p1 
and p2 – and in the lower part the formulation of Ohm’s law, bound to the condition that it is only applicable for 
fault modes 0 and 2. It is important to understand that all internal descriptions are only based on local information. 
Besides internal behavior description also the external appearance can be defined, i.e. the icon representing instances 
of this class in the superior system model together with its legend and other optional decoration; see Figure 9c).  
This approach of standardized and context-free model classes is a prerequisite to assemble the knowledge about 
technical part categories in centralized model libraries, from where they easily can be reused in future projects. This 
not only improves engineering efficiency, especially in developing variants or updates of a system, but also 
conserves the expertise of system engineers in a modular way. Based on already existing generic libraries a user-
specific adaption and extension has been set up in context of this missile project, see Figure 9a), MBDA_lib”. 
 
Industrial application - Assessment of a cable cutting system:  The quantitative modeling methods described above 
were applied to analyze the firing control system of a missile. The system consists of several connected circuit 
boards, a simplified signal transmission path for the commands received from ground station and several actuators. 
Due to the high number of electronic components on the boards their modelling process was supported by an auto-
mated method to import topological information incl. instance names seamlessly from the existing ECAD-netlists. 
Driven by the bill of materials, model classes have been set up to map all required component categories. The 
physical behavior descriptions were then added for the nominal behavior as well as for one or several fault modes, 
including their specific probability. While the internal topology of the boards came with the import, their external 
graphical appearance and their arrangement on top level of the system model was done manually. 
To validate the model several datasets for typical nominal scenarios were applied, forcing the system through 
sequences of internal states to defined actuator behavior. After successful validation the datasets have been extended 
to describe hazardous events like “no termination on command” and the model-based diagnosis function (see above) 
was used to determine possible root causes of this event and the resulting probability.  
Figure 10 displays the system top-level view, as inset the internal view of one board and as another inset the icon of 
a MOSFET as one of the two single-fault candidates. The suspected components are highlighted in the system 
hierarchy and their explaining fault modes are displayed in the result console (bottom). 
 

 

Figure 10: Hierarchical system with display of two candidates from a model-based diagnosis. 



 
The diagnostic analyses resulted in complete lists of all single- and double-fault root-causes for the injected 
hazardous events. The determined overall failure probabilities were successfully compared with existing figures 
resulting from a “manual” historical FMECA. This comparison added trust to the model-based FMECA 
methodology. The project was a success as it has formed the analysis basis for future design modifications of the 
system and proved the model-based approach. 
 

Conclusions 

This paper describes a model-based methodology for safety and dependability analysis. The creation process of the 
model assures that the safety engineer is in the state of having a full and complete understanding of the system. 
Another advantage is that he can use the model in the design team for the discussions of nominal and erroneous 
system behaviours with the component specialists. In the projects, where this method was applied, the model soon 
turned out to be used as the “golden reference”. Once the catalog (i.e. parts lists) of used devices is settled, 
subsystem modifications are easily updated via the above described ECAD netlist import functionality around the 
method. This assures drawing set consistency and rapid turnaround times of the analysis cycle in order to be able to 
evaluate proposed design modifications for Change Control Board decisions.  
Within the projects, limitations of the model-based approach were also identified to be in the complexity of systems 
electronics hardware. Whereas the modelling of discrete electronics (resistors, capacitors, switches, diodes, 
transistors, ...) was mastered, it was difficult to develop models for components with complex integrated circuits 
(e.g. DC/DC converters, FPGA). On the one hand, the character of the realized safety critical functionalities helps to 
mitigate the performance drawbacks, as they tend to be realized as simple as possible. On the other side the usage of 
complex elements e.g. anti-fuze FPGA technology in safety critical functionalities becomes more and more 
prevalent, so models have to catch up. First modeling steps to cover the logic realized in an FPGA were successful. 
The described method was applied for safety assessments in several projects within MBDA Germany and in various 
research projects. It has been proven that the model-based approach is a promising way ahead. Although modelling 
work forces the safety engineer to spend extra effort at project start, this investment pays back by the process 
ensured complete understanding of the assessed system, leading to a higher degree of confidence in the analysis 
results. In addition payback for the initial extra efforts for the model-based safety assessment comes from faster 
analysis results after design iterations.  
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